Content-based classification of breath sound with enhanced features
نویسندگان
چکیده
Since breath sound (BS) contains important indicators of respiratory health and disease, analysis and detection of BS has become an important topic, with diagnostic and assessment of treatment capabilities. In this paper, the identification and classification of respiratory disorders based on the enhanced perceptual and cepstral feature set (PerCepD) is proposed. The hybrid PerCepD feature can capture the time-frequency characteristics of BS very well. Thus, it is very effective for the exploration and classification of normal and pathological BS related data. The supervised classification models based on support vector machine (SVM) and artificial neural network (ANN) have been adopted to achieve automatic detection from BS data. The high detection accuracy results validate the performance of the proposed feature sets and classification model. The experimental results also demonstrate that the high accuracy of the pathological BS data can provide reliable diagnostic suggestions for breath disorders, such as flu, pneumonia and bronchitis.
منابع مشابه
Automatic classification of normal and abnormal cardiac sounds by combining features based on wavelet transform and capstral coefficients extracted from PCG signals (Research Article)
Cardiac sounds are produced by the mechanical activities of the heart and provide useful information about the function of the heart valves. Due to the transient and unstable nature of the heart's sound and the limitation of the human hearing system, it is difficult to categorize heart sound signals based on what is heard from a stethoscope. Therefore, providing an automated algorithm for prima...
متن کاملA New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks
Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...
متن کاملAnalysis and Automatic Detection of Breath Sounds in Unaccompanied Singing Voice
This paper presents a dual approach to the study of breath sounds in singing, consisting of an acoustic analysis of breath sounds, and development of an automatic breath detection system. Previouswork on automatic breath detection were based on relatively simple features that were postulated to be relevant to the detection. In contrast, this study starts with a detailed acoustic analysis of bre...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملA Model for Detecting of Persian Rumors based on the Analysis of Contextual Features in the Content of Social Networks
The rumor is a collective attempt to interpret a vague but attractive situation by using the power of words. Therefore, identifying the rumor language can be helpful in identifying it. The previous research has focused more on the contextual information to reply tweets and less on the content features of the original rumor to address the rumor detection problem. Most of the studies have been in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 141 شماره
صفحات -
تاریخ انتشار 2014